Locality Adaptive Discriminant Analysis
نویسندگان
چکیده
Linear Discriminant Analysis (LDA) is a popular technique for supervised dimensionality reduction, and its performance is satisfying when dealing with Gaussian distributed data. However, the neglect of local data structure makes LDA inapplicable to many real-world situations. So some works focus on the discriminant analysis between neighbor points, which can be easily affected by the noise in the original data space. In this paper, we propose a new supervised dimensionality reduction method, Locality Adaptive Discriminant Analysis (LADA), to learn a representative subspace of the data. Compared to LDA and its variants, the proposed method has three salient advantages: (1) it finds the principle projection directions without imposing any assumption on the data distribution; (2) it’s able to exploit the local manifold structure of data in the desired subspace; (3) it exploits the points’ neighbor relationship automatically without introducing any additional parameter to be tuned. Performance on synthetic datasets and real-world benchmark datasets demonstrate the superiority of the proposed method.
منابع مشابه
An Adaptive Neighborhood Choosing of the Local Sensitive Discriminant Analysis Algorithm
The curse of dimensionality is a problem of machine learning algorithm which is often encountered on study of high-dimensional data, while LSDA (Locality Sensitive Discriminant Analysis) can solve the problem of curse of dimensionality. However, LSDA can not fully reflect the requirements that the manifold learning for neighborhood, by using the adaptive neighborhood selection method to measure...
متن کاملPerformance analysis of Linear appearance based algorithms for Face Recognition
Analysing the face recognition rate of various current face recognition algorithms is absolutely critical in developing new robust algorithms. In his paper we propose performance analysis of Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Locality Preserving Projections (LPP) for face recognition. This analysis was carried out on various current PCA, LDA and LPP based...
متن کاملMorphological differences among the Garra variabilis populations (Cyprinidae) in Tigris River system of South East Turkey
In this study, by examining the character of the morphometric and meristic characters of Garra variabilis samples which is obtained from different locality in Tigris River, morphometric characters which are transformed, subjected to discriminant analysis and depending on grouping model, number of discriminant functions and according to importance of these in terms of explaining total variance, ...
متن کاملMorphological differences among the Cyprinion macrostomus (Cyprinidae) populations in the Tigris River
In this study, by examining the character of the morphometric and meristic in which Cyprinion macrostomus samples obtained from different locality in Tigris, morphometric character which are transformed subject to discriminant analysis and depending on grouping model to number of discriminant functions and according to importance of these totally variance, morphogical variance among populations...
متن کاملOptimized Discriminant Locality Preserving Projection of Gabor Feature for Biometric Recognition
Discriminant locality preserving projection(DLPP) can not obtain optimal discriminant vectors which utmostly optimize the objective of DLPP. This paper proposed a Gabor based optimized discriminant locality preserving projections (ODLPP) algorithm which can directly optimize discriminant locality preserving criterion on high-dimensional Gabor feature space via simultaneous diagonalization, with...
متن کامل